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Abstract—For a study of nonlinear wave motion under an electrostatic field, the Korteweg-de
Vries (KdV) equation for inviscid liquid film flowing under gravity down an inclined plane has been
derived, and the effect of the electric field on the stability of a solitary wave as a solution of the
KdV equation is examined. Under a constant electrostatic potential the stability of the wave is not

affected. However, with a slowly varying potential it becomes unstabie.

INTRODUCTION

The study of the dynamics of thin liquid layers is
of considerable interest and has application in many
engineering processes including film coating, gas ab-
sorption, reactors, condensers, evaporators, slot coat-
ing, and dip painting. One application of thin liquid
films occurs in the design of a space radiator.

Present-day space radiator designs employ armored
heat pipes built in by the wick materials such as nic-
kel, copper and titanium, etc. This kind of radiator
is then inherently heavy per unit area of radiating
surface which can he as much as 20 kg/m” Therefore,
many advanced radiator concepts have been devel-
oped for the design of high performance and lLight-
weight radiators required in space vehicles. For in-
stances, a carbon-carbon heat pipe radiator is propos-
ed by Rovang et al. [1] to make a lightweight radiator.
This concept uses 12 independent lithium loops to
transfer heat from a thermoelectric generator to heat
pipe radiators and a thin metal coating on the inside
of the pipe 1o enhance wettability and prevent material
interaction between the base and the heat pipe wor-
king fluid. Another type of space radiator was propo-
sed by Al-Baroudi et al. [2]. This is a bubble mem-
brane radiator in which an ellipsoid rotates about the
minor axis, vapor is introduced at the center of the
ellipsoid and is condensed on the inside surface of
the liner. This radiator uses artificial gravity imposed
on the working fluid by the centrifugal force to pump
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the fluid from the radiator. The heat of condensation
is conducted through the thin metallic liner which is
only required to contain the working fluid. These new
types of space radiators will replace the present-day
heavy armored radiators. However, the wall of this
new radiator has to be made as thin as possible to
reduce the radiator weight. Hence, the thinned wall
will be vulnerable to punctures by space debris or
micrometeorites. These radiators have to be repaired
or replaced whenever they are punctured. In this case
the maintenance cost will be very high. Therefore,
in order to solve this kind of problem an electrostatic
hquid film radiator (ELFR) for rejection of heat in
space has been already proposed, in which an internal
electrostatic field is applied to prevent leakage of the
liquid-metal coolant out of any puncture made by the
impact of the micrometeorite or the space debris [3-
5]. The result is that the ELFR will be allowed to
have a thinner armor and have no more frequent re-
pair jobs, hence there will be a considerable weight
and maintenance cost savings.

In the previous studies [3-5] the cases of laminar
viscous thin-film flows are only considered for the de-
sign of ELFR. However, as the fluid velocity becomes
large the viscous force of the fluid is dominated by
the inertial force and then the fluid can be considered
mviscid. For this inviscid film flow with a shallow
depth we have examined the nonlinear analysis about
a uniform flow and derived a nonlinear evolution
equation (KdV equation) with an electrostatic field to
investigate a nonlinear wave motion, e, to address
the question of how the inviscid liquid film and an
electrostatic field will interact. Here the pressure dis-
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tribution along the solid wall has not been shown be-
cause the same electrostatic strength is used as in
the viscous thin-film flow, i.e., where with above 20
kv/cm the pressure at the puncture is sufficiently be-
low the pressure outside the radiator minus the capil-
lary pressure and thus it is always possible to stop
a leak of the coolant such as lithium at 700 K through
the puncture.

The KdV equation was first derived in 1895 as an
asymptotic description of small-but-finite shallow-wa-
ter waves, where nonlinear and dispersive wave ef-
fects interact and dissipative effects can be neglected
[6]. The KdV equation arises in all situations which
can be approximated by a first order linear hyperbolic
systern, including a wide variety of physical contexts:
magnetohydrodynamics and ion-acoustic plasma [7],
etc. The KdV equation is solved exactly for appropri-
ately restricted initial data. There have been several
reviews [8 9] and it is dealt with extensively by Whi-
tham [10] and Newell [11].

Here the KdV equation will be derived with the
shallow-water theory for the inviscid film flow down
an inclined plane under an electrostatic field. Next
the propagation of a solitary wave has been shown
numerically with a small amplitude and a long wave-
length made by an initial disturbance. in order to exa-
mine the effect of an electrostatic field on the film
stability.

FORMULATION

Here for the investigation of the effects of the elec-
trostatic field of the inviscid liquid film as it flows down
an inclined plane, some comments concerning the sta-
tic electric field assumption should be made. The elec-
trostatic assumption is valid if L{pg)*/cT<<1, where
¢ is the speed of light, y, is the magnetic permeability,
¢ is the dielectric constant, L is the characteristic le-
ngth scale of the disturbance and 7 is the characteris-
tic unit of time. The value of L may be determined
by the geometry. the wavelength of the surface waves
on the film interface, or the decay length over which
the electric field decays. The value of T"is determined
by the rate at which the field is turned on or by the
frequency of the surface waves. With any of these
as the characteristic quantities for an operational
ELFR, the electrostatic condition will always be satis-
fied.

The liquid is considered to be inviscid, incompressi-
ble and irrotational. Here the two-dimensional case
is only considered. The plane is assumed to make
an angle B with the horizontal, and the coordinate sys-
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Fig. 1. The coordinate scheme of the solitary wave propa-
gating down an inclined plane with an electrostatic
field.

tem is chosen such that the x-axis is parallel to the
plane, while the y-axis is perpendicular to it (see Fig.
1). This implies that the components of the gravitation-
al acceleration in the x and y directions are g sin(B)
and —g cos(B), respectively. Above the liquid film
there is a vacuum. Within the vacuum region at a dis-
tance H from the plane is a charged plate with the
same length of the plane wall, which 1s parallel to
the x-axis. To consider this nonlinear wave motion
an initial wave disturbance with a small amplitude a
and a long wavelength / has been made, and let x=0
be at the center of the initial wave (see Fig. 1). Sup-
pose [ is the unit of length in the x direction, the inlet
film depth Ay is the unit of length in the y direction
and

o= (%] M
and
i=ii) @

where £<<1, lLe., the horizontal wavelength [ is as-
sumed very large when compared to the depth k,, and
p<<1, ie. the amplitude ¢ is very small compared
with the depth h,. If h/H<<1 then the charged plate
is very far from the plane relative to the thickness
of the film. Therefore to leading order in the ratio
of hy/H it can be assumed that the charged plate does
not see the film and the electrostatic problem for the
electric field decouples from the fluid dynamics prob-
lem. The ratio {=H/l is assumed to be order one.

The electric field 1s determined by solving Laplace's
equation

Vio=0, 3

for the electric potential ¢{x, y) in the fluid. o, and
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for the electric potential, ¢,, in the vacuum region
above the fluid but below the charged plate. For the
computational region V, the fluid region, V;, is defined
by 0Ly<N(x, t) and —L<x<L, where y=N(, {) is the
height of the film above the inclined plane, and the
vacuum region, V,, is defined by the strip —L<x<L
and NG, H<y<H—h, We will use the subscript or
superscript f for quantities in V; and the subscript or
superscript v for quantities in V., unless no confusion
can occur. The boundary conditions are that

olx, y)=FH®(x), for y=H— h,,
o, y}=0, for y= —h,. “)

Here F is the characteristic unit of electric field. The
function @) is a given dimensionless function of x,
and the product FH is a constant with the units of
electric potential. Along y =N(x, {) the boundary condi-
tions are such that the tangential electric field and
the normal displacement field are continuous

o0 N, D=6 N, B, 50 =g,99 (®)

on on

Here & 1s the dielectric constant of the fluid, g, is
the dielectric constant of the vacuum and the partial
derivative is in the direction of the outward unit nor-
mal, n, to the interface. It should be noted that the
mterface, y=N(, #), is unknown, so that the solution
of this electrostatic problem is coupled to the dyna-
mics of the film.

The liquid film is governed by the Bernoulli's equa-
tion. The velocity potential ¢, y, ) is given by the
velocity components (¢, v)=(gp/dx, dv/gy). The inde-
pendent and dependent variables are scaled as fol-
lows:

x—xl, y—h, y, H—h, H,

— !
jv*’(ll’], Oahi(l\/ghn @ [—)—,_zt
o

ghy’
o—FHo, E—~FE. (6)

Here g is gravity. With these scales the equations of
continuity. the boundary condition on the normal ve-
— h,, the continuity of normal stress (pres-
sure) at the free surface, and the kinematic condition

locity at y =

are (subscripts denote partial derivatives)

Eu: ‘-L(;J‘;\ =0, (7)
e=0at y=—1, ®
1-. 1y, X
Ut o o = ~=SIn
ot Hor NN B

+ncos B:K[zl - 1:| [EY+eEY] at y=pn, (9
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nz+uoxnx=;@ at y=pn. 10
Here n is the dimensionless perturbation of N(x, f)
from the uniform film height, and the dimensionless
constant K is introduced, ie.,

80F !

8ragp ' (11)

where p is the fluid density. The pressure in the vac-
uum above the liquid film are set to zero. And the
scaled Laplace’'s equation of the electric potential ¢
reduces to

£0ut+ 0, =0. (12)

Also, the dimensionless electric field is defined as

E:(gﬁail, n% ) (13)

with the normal component defined as E,=E-n and
the tangential component defined as E,=E-v where
v is the unit tangent to the interface. From (9) the
charged plate suspended above the liquid film only
influences the fluid motion via the inhomogeneous
term in the normal stress equation.

The equations are solved by recognizing that (7)
admits a power series solution in y and after using
(8) it is found,

ol y, =Tk 1)~ Fn(y+ 1)y + l"xm(y*—l)4

(14)

where I'(x, f) is the leading order term of o(x, y, #),
ie., @ulx, ¥, 8), and the electric potential ¢ can be also
expressed as a perturbation expression in £ from (12),
ie.,

Ok, 3, )= dulx, y)+edilx, y, . 15

Substituting (15) into (12) the ¢o and o, in the liquid
and gas phases, respectively, are found after using
the boundary conditions (4)-(5). The results for the
leading order ¢, are

)(1+y){

=P H- 1} for —1<y<0,

1
o =D(x) (y+ slj[;; +H— 1} , for O<y<H -1,
B t 7 t
(16)
and for ¢

BRRUSNE

+H— 1} 71, for —1<y<0,
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— AT
o= d>(x){ (H D l)n[ . +H 1} ,
for O<y<H-1. 17)

Setting B—¢&™ B* where B* is assumed order one
and then substituting (14) into the surtace conditions
(9)-(10) the following equations are obtained

1y 1 e o T 2
I'].+ r1+§prx‘~§(1+“n) {rxxr+“rrrxn urzx }8
+K(E ¥+ 2eKENE)+ 0 =0 (18
and

n= {1+ L,

- {—-(1 T + = p(l +unyn.I m}f +0(eY)
=0, (19)

where the fluid is assumed to have a perfect conduc-
tivity (¢—>w). The leading orders in ¢ of the derivative
of (18) with respect to x and of the Eq. (19) make the
following shallow-water equations [ 10, 11]:

N+ {1~ anut,=0 (20)
and
e+ + pps, =0, 2

where #=T,. Finally the normalized form of the KdV
equation can be derived from (18) and (19} after using
the integration of the @: —u — 1/28(} + 1%u,. + O(e%) over
the depth from y= —1 to y=un. The normalized form
of the KdV equation with the electrostatic field is

on ,om .3~ n 0 )
om o on 3~ n , 9 2
ot + ax + P (Y] o or {K( o) }

9 1 o
g +K(ES +O0(+ 22
o0 {5 0 KENED] 0 =0, @22)
Here the leading-order electric field in e can be calcu-
lated from (16), i.e., (Ey)=®&)H/(H— 1) and the first-
order electric field (E)=3UmH/H—1F from (17).

STABILITY

A linear stability analysis for the longwave approxi-
mation in the flow of an incompressible, viscous, thin
liquid film down an inclined plane has already been
performed [4, 5]. obtaining an extension of the classi-
cal Yih [12])-Benjamin [13] result for a falling film
on an inclined plane wall. The stability is available
if

10 H)(lfl),
Re<fc0t(B)ﬂ~K ; & @3)
( - —1+11J

where Re is the Reynolds number and the second
term on the right represents the destabilizing effect
of the electrostatic field.

For the classic Korteweg-de Vries equation [6] it
is convenient to transform the Eq.(22) at ®=1in a
reference frame moving with the basic wave speed

¢=1 by introducing

E=x—1, t:% ef. (24)

The transformed result is

M L oh_én , d' a
LI RPN N R Y
o enaE e PR
1
e+ @nen)=o 25)

This equation except for the electrostatic term is Whi-
tham's normal form of the KdV equation [10] and
the following sclitary wave satisfies (25) at 9 =¢ with-
out the fourth term:

n=sech*(—4r). (26)

The stability of (26) as a solution of (25) without the
electric field has been established by Benjamin [14]
and Bona [15]. These references deal with one-dimen-
sional perturbations and show that the one-dimen-
sional solitary wave (26) is neutrally stable with re-
spect to small, transverse perturbations.

And considering the linear stability analysis of the
Eq. (22) with a time harmonic solution proportional
to explilkx —wt)]. where £ is the real wave number
and w=w,+iw, is the complex frequency, it is found
from the Eq. (22) that o, is zero, i.e., with this sinusoi-
dal wave disturbance the Eq.(22) is always neutrally
stable.

NUMERICAL SOLUTIONS

Here the following KdV equation with an electrosta-
tic field will be solved numerically

L LS [a n é
i el +6K—f
o e o’

e e )(El’)}] -0, 27
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Fig. 2. The initial film thickness of (31).

where (E) = ®EH/(H—1) and (£,")= ®EMH/H— 1)
The above equation without the electric field was for-
mulated by Korteweg-de Vries to explain the solitary
waves observed by J. Scott Russell. The Eq.(27) is
obtained from the Eq. (22) by setting E=x—¢, t—(1/6)¢
and pu=1/9.

The KdV type Eq. (27) is solved by using the con-
cepts of the usual leap-frog scheme in space [16]:

wel __ i

on _ 0 ) : 28)
at At

an 1 - 1n —ny ln

ol s+ n 4 9
n PY: 3 [Q3 TR ol 1 T ol ¢ P ) 2A§ 29
on _ M =200 S =20 )
o 208 |

(30)

where 1" =nyAEl nAv.

An initial condition and three boundary conditions
are needed to solve (27). The initial condition is

N M=a sech’(C&—C)) (31)

and the boundary conditions (—L<x<L) (Chu et al,
1983) are

n(~L. 9=0. (L r):% € v=0. 32)
The initial condition (31) represents a single soliton
with amplitude a placed initially at £=(C,/C,). Here
the lithium at 700 K (p=0.493g/cm*) is taken as a work-
ing fluid.

1. Constant Electrostatic Potential
For a special case we consider @)= 1 in the elec-
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Fig. 3. The film thickness profiles determined by Eq. (33)
for K=0 (—) and K=900.8 (---) at t=04.

trostatic potential assuming that the length of the foil
is infinite as L—co. The Eq. (27) becomes

o B }A

0 8 { (93
o T -~ + -~ .
- £ " (H l)l 0 (33)

+ v
o e e

The Eq. (33) is solved with the initial condition (31)
at £=5.0X10 ¢ a=1, C,;=125 and C:=0 (Fig. 2). At
t=0.4 both results are plotted with an arbitrary elec-
trostatic field ({=900.8) and without an electrostatic
field (K=0) in Fig. 3. The soliton behavior at K=0
agrees well with the results obtained by Fornberg and
Whitham [17], i.e., there is no dissipation phenomena
as the wave moves forward. At K=900.8 the ampli-
tude of the wave is unaltered but the wave propagates
at a speed depending on the coefficients of gn/g&, that
is, here the solitary wave speeds up by the coefficient
6eK[ (HH/(H~1)"] in (33). The stability of the solitary
wave is not affected by the added electrostatic field
with ®(&)=1.
2. Slowly varying electrostatic potential in

In order to simulate a slowly varying potential we
set ®=0.1 exp(— 100&)). With this potential the Eq.
27) reduces to

an an . _a™m

P

2
st g lowhoeg flo o

In Fig. 4 the Eq. (34) is plotted with K=144.1 keeping
the other parameters as in Fig. 3. The interface is
plotted at the times t, =0.021, #=0.---, 15. The slowly
varying potential makes the solitary wave oscillating
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Fig. 4. The film thickness profiles determined by Eq. (34)
for t,=0.02n, n=0,---, 15 at K=144.1.

in the upstream as time goes. The solitary wave is
unstable.

CONCLUSIONS

The purpose of this investigation is to study the
effect of an electrostatic field on an inviscid liquid
film flowing down an inclined plane and to develop
model equations for this flow system. For a prelimi-
nary study the Korteweg-de Vries equation for this
system has been derived and the propagation of the
solitary waves is examined. The conclusion is that in
the considered limit if the electrostatic potential is
constant the applied electrostatic field has little influ-
ence on the wave stability. This differs from the linear
stability analysis in Kim et al. [4, 5], because the plane
is nearly horizontal and the effect of the electric field
is very small. Also these results will only hold for
a finite distance along the plane. If the potential is
slowly varying in space, the solitary wave becomes
unstable. In this unstable case, a little larger inclina-
tion of the angle is needed to increase the film stabili-
zing effect, i.€., the gravitational component in y-direc-
tion. And for the ELFR design, several other problems
as in the flow of the viscous liquid film have not been
considered here yet. These other questions will be
addressed in later works.
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