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A b s t r a c t - F o r  a study of nonlinear wave motion under an electrostatic field, the Korteweg-de 
Vries (KdV) equation for inviscid liquid film flowing under gravity down an inclined plane has been 
derived, and the effect of the electric field on the stability of a solitary wave as a solution of the 
KdV equation is examined. Under a constant electrostatic potential the stability of the wave is not 
affected. However, with a slowly wlrying potential it becomes unstaNe. 

INTRODUCTION 

The study of the dynamics of thin liquid layers is 

of considerable interest and has application in many 

engineering processes including film coating, gas ab- 

sorption, reactors, condensers, evaporators, slot coat- 
ing, and dip painting. One application of thin liquid 

films occurs in the design of a space radiator. 

Present-day space radiator designs employ armored 

heat pipes built in by the wick materials such as nic- 

kel, copper and titanium, etc. This kind of radiator 

is then inherently heavy per unit area of radiating 
surface which can be as much as 20 kg/m'Q Therefore, 

many advanced radiator concepts have been devel- 

oped for the design of high performance and light- 

weight radiators required in space vehicles. For in- 

stances, a carbon-carbnn heat pipe radiator is propos- 
ed by Rovang et al. [ 1] to make a lightweight radiator. 

This concept uses 12 independent lithium loops to 

transfer heal from a thermoelectric generator to heat 
pipe radiators and a thin metal coating on the inside 

of the pipe to enhance wettability and prevent material 

interaction between the base and the heat pipe wor- 
king fluid. Another type of space radiator was propo- 

sed by A1-Baroudi et al. [2]. This is a bubble mem- 

brane radiator in which an ellipsoid rotates about the 

minor axis, vapor is introduced at the center of the 
ellipsoid and is condensed on the inside surface of 

the liner. This radiator uses artificial gravi!y imposed 

on the working fluid by the centrifugal force to puinp 

*Author to whom conununications should be addres- 

sed. 

the fluid from the radiator. The heat of condensation 

is conducted through the thin metallic liner which is 

only required to contain the working fluid. These new 

types of space radiators will replace the present-day 

heavy armored radiators. However, the wall of this 
new radiator has to be made as thin as possible to 
reduce the radiator weight. Hence, the thinned wall 

will be vulnerable to punctures by space debris or 

micrometeorites. These radiators have to be repaired 

or replaced whenever they are punctured. In this case 

the maintenance cost will be very high. Therefore, 

in order to solve this kind of problem an electrostatic 
liquid film radiator (ELFR) for rejection of ileat in 

space has been already proposed, in which an internal 

electrostatic field is applied to prevent leakage of the 

liquid-metal coolant out of any puncture made by the 

impact of the micrometeorite or the space debris [3- 

5]. The result is that the ELFR will be allowed to 
have a thinner armor and have no more frequent re- 

pair jobs, hence there will be a considerable weight 

and maintenance cost savings. 

In the previous studies ~3-5] the cases of laminar 

viscous thin-fihn flows are only considered for the de- 

sign of ELFR. [lowever, as the fluid velocity becomes 
large the viscou:s force of the fluid is dominated by 

the inertial force and then the fluid can be considered 

inviscid. For this inviscid fihn flow with a shallow 

depth we have examined the nonlinear analysis about 

a uniform flow and derived a nonlinear e;olution 

equation (KdV equation) with an electrostatic field to 

investigate a nonlinear wave motiml, i.e., to address 
the question of how the inviscid liquid fihn and an 

electrostatic field will interact, t lere the pressure dis- 
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tribution along the solid wall has not been shown be- 

cause the same electrostatic strength is used as in 
the viscous thin-film flow, i.e., where with above 20 
kv/cm the pressure at the puncture is sufficiently be- 
low the pressure outside the radiator minus the capil- 
la~' pressure and thus it is always possible to stop 
a leak of the coolant such as lithium at 700 K through 
the punctnre. 

The, KdV equation was first derived in 1895 as an 
asymptotic description of small-but-finite shallow-wa- 
ter waves, where nonlinear and dispersive wave ef- 
fects interact and dissipative effects can be neglected 
[6~. The KdV equation arises in all situations which 
can be approximated by a first order linear hyperbolic 
system, including a wide variety of physical contexts: 

magnetohydrodynamics and ion-acoustic plasma E7~, 
etc. The KdV equation is solved exactly for appropri- 
ately restricted initial data. There have been several 
reviews F8, 9~ and it is dealt with extensively by Whi- 
tham [10] and Newell [_11~. 

Here the KdV equation will be derived with the 
shallow-water theory for the inviscid film flow down 

an inclined plane under an electrostatic field. Next 
the propagation of a solitaw wave has been shown 
numerically with a small amplitude and a hmg wave- 
length made by an initial disturbance, in order to exa- 
mine the effect of an electrostatic field on the film 

stability. 

F O R M U L A T I O N  

Here for the investigation of the effects of the elec- 

trostatic field of the inviscid liquid film as it flows down 
an inclined plane, some comments concerning the sta- 
tic electric field assumption should be made. The elec- 
trostatic assumption is valid if L(ia<,s)VVcT<.<l, where 
c is tim speed of light, tJ,, is the magnetic permeability, 
e is the dielectric constant, L is the characteristic le- 
ngth scale of the disturbance and T is the characteris- 
tic unit of time. The value o f / .  may be determined 
by the geometry, the wavelength of the surface waves 
on the film interface, or the decay length over which 
the electric field decays. The value of T is determined 
by the rate at which the field is turned on or by the 
frequency of the surface waves. With any of these 
as the characteristic quantities for an operational 
ELFR. the electrostatic condition will always he satis- 

fied. 
The liquid is considered to be inviscid, incompressi- 

ble and irrotational. Here the two-dimensional case 
is only considered. The plane is assumed to make 
an angle [3 with the horizontal, and the coordinate sys- 

C[IARGED FOIL 

FREE SURFACE } 
y y= N(x, t )  

, CONDUCTIVE / 
ho '1 LIQUID ~/////////////~////////////////////~/~~//~ 

Fig. I. The coordinate scheme of the solitaD' wave propa- 

gating down an inclined plane with an electrostatic 
field. 

tern is chosen such that the x-axis is parallel to the 
plane, while the y-axis is perpendicular to it (see Fig. 
1). This implies that the components of the gravitation- 

al acceleration in the x and y directions are ~ sin(J3) 
and --g cos(J3), respectively. Above the liquid film 
there is a vacuum. Within the vacuum region at a dis- 
tance H from the plane is a charged plate with the 
same length of lhe plane wall, which is parallel to 
the x-axis. To consider this nonlinear wave motion 
an initial wave disturbance with a small amplitude a 
and a long wavelength l has been made, and let x = 0 
be at the center of the initial wave (see Fig. 1). Sup- 

pose I is the unit of length in the x direction, ll-~e inlet 
film depth h. is the unit of length in the 3' direction 
and 

,/, (1) 

and 

I'(] " 

where e<<l ,  i.e.. the horizontal wavelength l is as- 
sumed very large when compared to the depth ho, and 
~<<1, i.e., the amplitude a is very small compared 
with the depth h{,. If h,>/lf<< 1 then the charged plate 
is v e u  far from the plane relative to the thickness 
of the film. Therefore to leading order in the ratio 
of h<,/tt it can be assumed that the charged plme does 
not see the film and the electrostatic problem for the 
electric field decouples from the fluid dynamics prob- 
lem, The ratio (.i H/I is asstuned to be order one. 

The electric fMd is determined by solving Laplace's 
equation 

V-'o - O, (3) 

for the electric potential O(x,y) in the fluid, o,, and 
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for the electric potential, 0,, in the vacuum region 
above the fluid but below the charged plate. For the 
computational region V, the fluid region, E~ is defined 
by 0<y_<_N(x. t) and - L < x < L ,  wherey=N(x,  t) is the 
height of the film above the inclined plane, and the 
vacuum region, V,, is defined by the strip L<x<L 
and N(x, t)<y<_H h,). We will use the subscript or 
superscript f for quantities in K. and the subscript or 
superscript v for quantities in 1/;. unless no confusion 
can occur. The boundary conditions are that 

O(x,y)-FH~(x),  for y = H  h,,, 
O(x,y)=0, for y =  h~,. (4) 

Here F is the characteristic unit of electrk: field. The 
function ~(x) is a given dimensionless function of x, 
and the product FH is a constant with the units of 
electric potential. Along y =N(x, t) the boundary' condi- 
tions are such that the tangential electrk: field and 
the normal displacement field are continuous 

00' 0'(x, N, t) = r N, t), e, 00' = ~ , _ _  (5) 
On On 

Here e, is the dielectric constant of the fluid, a, is 
the dielectric constant of the vacuum and the partial 
derivative is in the direction of the outward unit nor- 
mal. n, to the interface. It should be noted that the 
interface, y NO:, t), is unknown, so that the solution 
of this electrostatic problem is coupled to the dyna- 
mics of the film. 

The liquid film is governed by the Bernoulli's equa- 
tion. The velocity potential O(x,y, t) is given by the 
velocity components (u, v)-(Oq)/Ox, O~o/~Y). The inde- 
pendent and dependent variables are scaled as fol- 
lows: 

x-+xl, y~h~, y, H-~h,~ H, 

I , ~  l 
�9 u  o-'~:y~/eh,, ~,, t-'v,--e~t, 
O-~FHO, E-~FE. (6) 

Here g is gravity. With these scales the equations of 
continuity, the boundary condition on the normal ve- 
locity at y -  h., the continuity of normal stress (pres- 
sure) at the free surface, and the kinematic condition 
are (subscripts denote partial derivatives) 

eq~ + o,? - 0, (7) 

o, = 0  at y 1, (8) 

1 - . ,  1 ~ ~ x 
~  gtr176 2 ~r )v,TSin[ 3 

v , ~  ,v 2 

1 
q, + ~r = ~-q> at y = ~q. (10) 

Here q is the dimensionless perturbation of N(x, t) 
from the uniform film height, and the dimensionless 
constant K is introduced, i.e., 

K =  a~-'  8~agp ' (11) 

where p is the fluid density. The pressure in the vac- 
uum above the liquid film are set to zero. And the 
scaled Laplace's equation of the electric potential 0 
reduces to 

e0xx + 0,., = 0. (12) 

Also, the dimensionless electric field is defined as 

E Hoo ), (la) 
, Ox 03'; 

with the normal component defined as E,  E.n and 
the tangential component defined as E~=E 'u  where 
u is the unit tangent to the interface. From (9) the 
charged plate suspended above the liquid film only 
influences the fluid motion via the inhomogeneous 
term in the normal stress equation. 

The equations are solved by recognizing that (7) 
admits a power series solution in y and after using 
(8) it is found, 

9 e + ,+e -  
O(x,y, t ) : r (x ,  l ) - ~ s  112 ~E..(y+l) ~ ~.... 

(14) 

where F(x, t) is the leading order term of ~0(x,y, t), 
i.e., 0o0r Y, t), and the electric potential 0 can be also 
expressed as a perturbation expression in z from (12), 
i.e., 

O(x,y, t) 0~,(x,y)+e0,(x,y, t ) + " ' .  (15) 

Substituting (15) into (12) the O,, and ox in the, liquid 
and gas phases, respectively, are found after using 
the boundaD ' conditions (4)-(5). The results for the 
leading order 0,, are 

( i + y ) [ 1  + H - l ]  I for - l < y < 0 .  
0,,'= o(x) e, -LT, 

0 J : q b ( x ) ( y +  I - I l l - + H - 1  ] ', for 0 < y < H - 1 ,  
', g t  / k g t  

(16) 

and for 01 

_ . ( x )  (l l-y) [ 1  ] ' O: ~= g, q + H - 1  , for - l < . v < 0 ,  
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/ y " 1 

for 0 < y < H -  1. (17) 

Setting 13 ~:-,;213" where 13" is assumed order one 
and then substituting (14) into the surface conditions 
(9)-(10) the following equations are obtained 

1 -  , 1 + -  ., 

+ K(Ed)=' + 2aK(Eo")(E,') 4 0 ( e  e) = 0 (18) 

and 

n,-1(1+ ~n)r,}, 

=0, (19) 

where the fluid is assumed to have a perfect conduc- 
tivity ({,---'oo). The leading orders in a of the derivative 
of (18) with respect to x and of the Eq. (19) make the 
following shallow-water equations [10, 11]: 

q.+ {(1- ~q)u},= 0 (20) 

and 

q~+u,+ ~aum=O, (21) 

where u = F,  Finally the normalized form of the KdV 
equation can be derived from (18) and (19) after using 
the integration of the m~ u - 1/2r ~- 1)eu,., + O(a 2) over 
the depth from y = - 1 to y = ~iq. The normalized form 
of the KdV equation with the electrostatic field is 

3 -  O'q + 0 f i ~  + Oq + ~ _ p q _ _  {K(E,)~} 
Ot Ox 2 0 x  8x 

~ (? i 0 X {~ Oggl @K(E,,v)(Elr)}q-O(;24-1~2):O. ( 2 2 )  _ _ _  0~2 

Here the leading-order electric field in e =an be calcu- 
lated from (16), i.e., (Ed)=~(x)H/(H - 1)and the first- 
order electric field (E()=dP(x)rlH/(H-1)=" from (17). 

STABILITY 

A linear stability analysis for the Iongwave approxi- 
mation in the flow of an incompressible, viscous, thin 
liquid film down an inclined plane has already been 
performed [-4, 5], obtaining an extension of the classi- 
cal Yih [12J-Benjamin [13~ result for a falling film 
on an inclined plane wall. The stability is available 
if 

5 H:/1 
Re<--cot([3) lOK Tk---a"1 , (23) 

6 9 (_2_1+H):, 

where Re is the Reynolds number and the second 
term on the right represents the destabilizing effect 
of the electrostatic field. 

For the classic Korteweg-de Vries equation E6] it 
is convenient to transform the Eq.(22) at �9 1 in a 
reference frame moving with the basic wave speed 
c = l  by introducing 

{=x- t ,  ~=16 ~t. (24) 

The transformed result is 

3q _~ 9 ~ ~TI 3:~q 6K~-~ 
at + 

{ 1 + (E,,')(E:)}: 0. (25) 

This equation except for the electrostatic term is Whi- 
tham's normal form of the KdV equation [10] and 
the following solitary wave satisfies (25) at 9~ = e with- 
out the fourth term: 

rl=sech2(~ 4r). (26) 

The stability of (26) as a solution of (25) without the 
electric field has been established by Benjamin [14] 
and Bona [15]. These references deal with one-dimen- 
sional perturbations and show that the one-dimen- 
sional solitary, wave (26) is neutrally stable with re- 
spect to small, transverse perturbations. 

And considering the linear stability analysis of the 
Eq. (22) with a time harmonic solution proportional 
to exp[i(kx-oJt)~2, where k is the real wave number 
and co=m~+iw is the complex frequency, it is found 
from the Eq. (22) that co, is zero, i.e., with this sinusoi- 
dal wave disturbance the Eq. (22) is always neutrally 
stable. 

NUMERICAL SOLUTIONS 

Here the following KdV equation with an electrosta- 
tic field will be solved numerically 

0q aq 0:~q 8 

{ I (E.')e +(E,/)(E,')}]=O, (27) 

K o r e a n  J.  Ch.  E . ( V o l .  10 ,  N o ,  2)  
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Fig. 2. The initial film thickness of (31). 

1.6 

where (Ed) O(OH/(H 1) and (E:') = O({)rlH/(H lY'. 
The above equation without the electric field was for- 

mulated by Korteweg-de Vries to explain the solitary 
waves observed by J. Scott Russell. The Eq, (27) is 
obtained from the Eq, (22) by setting { x - t ,  ~ (1/6)t 
and ~=  1/9. 

The KdV type Eq. (27) is solved by using the con- 
cepts of the usual leap-frog scheme in space El6]: 

8n r~"" ' rb" - (28) 
a~: Ac 

= 3  I ~ ' l ' - l l j  [" 
rl o n  (rl, 1" + rl/' + rb l") (29) 

a~ 2z~ 
O:lll __ (rb, 2" + ~ " -  2~. l")--(~" ~-II/ 2"-- 2r~ (9 
a{ :~ 2A{  ~ 

(3O) 

where /~" rl0"A~., nay).  

An initial condition and three boundary conditions 
are needed to solve (27). The initial condition is 

n ({ ,0 )=a  sech'(C~,{ Cl) (31) 

and the boundary conditions ( L<x<L) (Chu et al., 
1983) ave 

r l ( -L ,  c) 0, q(L, r) ~ (L, z)=0.  (32) 

The initial condition (31) represents a single soliton 
with amplitude a placed initially at {=(C~/C,,). Here 
the lithium at 700 K (p 0.493g/cm:5 is taken as a work- 
ing fluid. 
I. Constant  Electrostat ic  Potent ial  

For a special case we consider O(0  1 in the elec- 

1..I 

s L.0 
Ct] 
0 3  
r .7  

z 
M 
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[.... 
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At ~r : 0.4 

- - -  K = 0.0 
--- K = 900.8 

~ _ _  _~"/ ii I , 

' - - 7  

0.'0 0.'8 1.6 

Fig. 3. The film thickness profiles determined by Eq. (33) 
for K = O  (--)  and K=900.8 (---) at z = 0 , 4 .  

trostatic potential assuming that the length of the foil 
is infinite as L--~co. The Eq. (27) becomes 

on an an an } :  
0z + n ~  + a [ ~  + 6 K 0 g  ( H ~ I )  5 " (33) 

The Eq. (33) is solved with the initial condition (31) 
at e =  5.0X 10 ~, a := 1, C0 = 12.5 and C1 = 0 (Fig. 2). At 
~ - 0 . 4  both results are plotted with an arbitrary elec- 
trostatic field (K--900.8) and without an electrostatic 
field (K=0)  in Fig. 3. The soliton behavior at K = 0  
agrees well with the results obtained by Fornberg and 
Whitham [17], i.e., there is no dissipation phenomena 
as the wave moves forward. At K=900.8 the ampli- 
tude of the wave is unaltered but the wave propagates 
at a speed depending on the coefficients of aq/a~., that 

is, here the solitary wave speeds up by the coefficient 
6sKE(H~)/(H - 1) 3] in (33). The stability of the solitary 
wave is not affected by the added electrostatic field 

with O ( 0 =  1. 
2. Slowly varying e lectrostat ic  potential  in 

In order to sinmlate a slowly varying potential we 

set O = 0 . 1  exp( 100{~). With this potential the Eq. 
(27) reduces to 

an an a ' n  + 

H~ a [ 0 ( 0 2 { 1 + ~  q 1 } ] : 0 .  (34) 6Kill--- 1) :~ -0~" 

In Fig. 4 the Eq. (34) is plotted with K 144.1 keeping 
the other parameters as in Fig. 3. The interface is 
plotted at the times ~:,~=0.02n, n - 0 , . - ' ,  15. The slowly 
varying potential makes the solitary wave oscillating 
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Fig. 4. The film thickness profiles determined by Eq. (34) 
for z ,=0.02n,  n=O,..., 15 at K=144.1.  

in the upstream as time goes. The solitao' wave is 
unstable. 

C O N C L U S I O N S  

The purpose of this investigation is to study the 
effect of an electrostatic field on an inviscid liquid 
film flowing down an inclined plane and to develop 
model equations for this flow system. For a prelimi- 
nary study the Korteweg-de Vries equation for this 
system has been derived and the propagation of the 
solitary waves is examined. The conclusion is that in 
the considered limit if the electrostatic potential is 
constant the applied electrostatic field has little influ- 
ence on the wave stability. This differs from the linear 
stability analysis in Kim et al. [4, 5], because the plane 

is nearly horizontal and the effect of the electric field 
is reD" small. Also these results will only hold for 
a finite distance along the plane. If the potential is 
slowly vaD'ing in space, the solitary wave becomes 
unstable. In this unstable case, a little larger inclina- 
tion of the angle is needed to increase the film stabili- 
zing effect, i.e.; the gravitational component in )'-direc- 
tion. And for the ELFR design, several other problems 
as in the flow of the viscous liquid film have not been 
considered here yet. These other questions will be 
addressed in later works. 
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